AUSTRALIAN NEREIDAE
 Including descriptions of three new species and one genus, together with summaries of previous records and keys to species.

By Olga Habtman*
Communicated by S. J. Tedmonds

[Read 8 May 1953]

Abstract

SUMMARY The Australian (and New Zealani) Nereidae are recorded with 47 species in 13 genera. One genus, Anstralowereis is new; two species, Ceratocepfula edmondst and Microneras halei, and one subspecies, Platynervis duncrilii antipoda are newly described. There are many new records of distribution, particularly for the species occircing in the Flindersian and Peronian provinces. The recorded data of all the species are summarised in a series of charts.

INTRODUCTION

The polychactous annelids of the family Nereidae are among the more conspicuous, well represented groups of marine invertebrates in the Commonweaith of Australia and the Dominion of New Zealand. As in other known geographic treas, they are latgely littoral. Curiously, however, the present study indicates that the nereids, at least for the southorn half of Australia, are unusually diversified and modified, probably more so than in any other geographic area of compatable size. Thus, among the 47 species in 13 genera, there are some with very primitive characters, such as presence of setae in the first segment; others, such as Austrolonereis, have functional coelomoducts and papilated ventrum. These facts make it particularly desirable to recognize their positions or affinities with the nereids of other parts of the world.

In spite of the fairly large number (47) recorded here, it can hatdy be assumed that the number of species is even mearly complete. Much of the coastline remains almost unknown with respect to its polychaetons fauma. The records to date are largely those made by incidental collecting. There have been no extensive surveys of coastal arcas such as was done for the echinoderms (Clark, 1946).

Recent studies by Knox (1951) on the mereids of New Zealand indicate that there are conspicuous differences in the fruma of the Dominion and the Commonvealth, at least for its southern half. Comparison has been difficult in many cases for the literature is seattered and sometimes obscure in essential details. Type collections, if existing, are often deposited in museums outside of Australia.

An attempt is here made to correlate and assemble these scatrered data. Charts I to IV summarize the vecords of the 47 species, including: acceptable name, date and source of original publication, place of origin, diagnostic accounts, syoonyms, distributional data and new records, ecologic niche, unique characteristics, method of reproduction in so far as known, and the formulae of the proboscidial processes.

The materials on which these studies are based were collected mainly from littoral zones of South Australia, Victoria and New South Wales, thus are largely south-eastern Australia. These areas fall within the Peronian and Flindersian provinces of IIedley: Hased on studies of the echinoderm fauna, H. L. Clark (1946) finds that these two provinces have the most numerous endemic species (82% of the Peronian and 89% of the Flindersian echinoderms are endemic in Australia), If the annelids are equally imique, as a comparison of the charts indicates, one may expect a widely diversified polychaetous fauna.

[^0]I am indebted to the following people and institutions for the collections on which the present study is based: Mr. Herbert M. Hale and associates of the South Australian Museum, Mr. S. J. Edmonds of the University of Adelaide, and Miss Barbara Dew of Cronulla, New South Wales. The Administration of the Allan Hancock Foundation of the University of Southern Californa provided material aid and support to conduct these studies. Illustrations are by Anker Petersen of the Allan Hancock Foundation.

Types and complete series of species are deposited in the institutions from which the collections originate. Duplicate series are in the Allan Hancock Foundation.
CHART I.

Name of Species	Date and source of publication	Place of origin	Diagnostic account	Synonyms
Australonereis ehlersi (Augener)	$\begin{aligned} & \text { 1913, pp. 142-145, } \\ & \text { figs. } \end{aligned}$	Swan River area, W.A.	Monro, 1938, pp. 618-623, and below	Nereis (Leonnates) ehlersi Augener, 1913, and Leptonereis ehlersi Monro, 1938
Ceratocephala edmondsi, n. sp.	Herein	South Australia	Below	
Ceratonereis mirabilis Kinberg	1866, p. 170	Brazil	Augener, 1913, pp. 168-171; Horst, 1924, pp. 180-182 figs.	Ceratonereis tentaculata Kinberg, 1866
Ceratonereis lapinigensis Grube	1878, pp. 69.70	Philippine Islands	Augener, 1913, pp. 166-168	Possibly the same as C. costae Grube, 1840
Ceratonereis aequisetis Augener	$\begin{aligned} & \text { 1913, pp. } 171-174 \\ & \text { figs. } \end{aligned}$	Swan River area W.A.	(See original)	Questionably includes C. erythraeensis (fide Monro, 1938)
Ceratorereis erythraeensis Fauvel	$\begin{aligned} & \text { 1918, pp. } 505-506 \\ & \text { figs. } \end{aligned}$	Madagascar	Fauvel, 1919, pp. 407-410 figs.	Possibly the same as S. aequisetis Augener
Cheilonereis peristomialis Benhatn	1916a, pp. 392-393	New Zealand and South Australia	Benham, 1916b, pp. 138-143, figs.	
Micromereis halei, n. sp.	Herein	South Australia	Below	
Namanereis* quadraticeps (Blanchard)	$\begin{aligned} & \text { 1849, p. 25, } \\ & \text { figs. } \end{aligned}$	Chile	Benham, 1909, pp. 242-244, figs.	Lycastis quadraticeps Blanchard 1849 and others
Nicon aestuariensis Knox	$\begin{aligned} & 1951, \text { pp. 225-227, } \\ & \text { figs. } \end{aligned}$	Banks Peninsula, N.Z.	(See original)	
Neanthes vicalii Kinberg	1866, p. 171	Pt. Jackson, N.S.W.	Augener, 1913, pp. 149-1.53; Augener, 1924, p. 316	Nereis albanyensis Augener
Neanthes cricogratha (Ehlers)	$\begin{aligned} & 1905, \text { pp. } \quad 29-30 \\ & \text { figs. } \end{aligned}$	New Zealand	Benham, 1916, p. 134	Nereis arenaceodentata Benham, 1916
Neanthes, near cricognatha (Ehlers)	Herein	South Australia	Below	
Neanthes kerguelensis (McIntosh)	$\begin{aligned} & \text { 1885, pp. } 225-227 \\ & \text { figs. } \end{aligned}$	Kerguelen Islands	Augener, 1924, p. 330 ; Augener, 1913, pp. 164-166	Nereis ketguelensis var. oligodonta Augener, 1913 (?) (see below)
Neanthes oxypoda (Marenzeller)	$\begin{aligned} & \text { 1879, pp. } 120-121 \\ & \text { figs. } \end{aligned}$	Southern Japan	$\begin{aligned} & \text { Monro, } 1938 \text {, p. } 614, \\ & \text { figs. } \end{aligned}$	Nereis (Alitta) oxypoda Maretzeller, 1879

Name of Species	Date and source of publication	Place of origin	Diagnostic account	Synonyms
Perinereis pseudocamiguina Augener	$\begin{aligned} & \text { 1922, pp. 183-186, } \\ & \text { figs. } \end{aligned}$	Chile	Monto, 1939a, p. 118	Possibly the same as Perinereis helleri or P. camiguina (fide Monro 1939
Perinereis calmani Monro	$\begin{aligned} & \text { 1926, pp. } 318-320 \text {, } \\ & \text { figs. } \end{aligned}$	N.S.W, and Eastern Australia	(See original)	
Perinereis nigropunctata (Horst)	$1889, \text { pp. 171-174, }$ figs.	Malay	Angener, 1929b, p. 24, figs.	Perinereis yorkensis Augener, 1922b
Perinereis vancaurica (Ehlers)	1868, p. XX	Nicohar Island	Monro 1931 , p. 14; Fauvel, 1933, pp. 34-35	Nereis langwida Grube, 1868; Perinereis nameaurica (variant)
Perinereis obfuscata Grube	1878, pp. 86-87	Philippine Islands	$\begin{aligned} & \text { Monro, 1931, एp. 16-18, } \\ & \text { figs. } \end{aligned}$	
Perinereis helleri Grube	1878, pp. 81-82	Philippine Islands	Monro, 1931, pp. 14-15, figs.	
Perincreis camiguina Grube	$\begin{aligned} & \text { 1878, pl. } 87-89, \\ & \text { figs. } \end{aligned}$	Philippine Islands	Monro, 1931, pp. 15-1 $\frac{1}{2}$, figs.	--
Platyrereis australis (Schmarda)	$\begin{aligned} & \text { 1861, p. } 101 \\ & \text { figs. } \end{aligned}$	New Zealand	Knox, 1951 (pp. 223-225, figs.	Heteronereis australis Schmarda
Platynereis dumerilii antipoda, new species	Hercin	South Australia	(See below)	(see below)
Platynereis magalhaensis Kinberg	1866. ค. 177	Straits of Magellan, Chile	Monro, 1930, рг. 106-107, figs. Monro, 1936, pp. 137138	(see below)
Platynereis polyscalma Chamberlain	$\begin{aligned} & \text { 1919. pr. 219-226, } \\ & \text { figs. } \end{aligned}$	South Pacific Islands	Fauvel, 1932, p. 114; and original	
Platyrercis bicanaliculate (Baird)	1863, p. 109	Vancouver Island, Canada	(See below)	(see below)
Pseudonereis rottnestiana Augener	1913. pp. 184-187	Rottnest, Green Is, W.A.	Augener, 1913, pp. 18+187	
Pseudonereis anomala Gravier	$\begin{aligned} & \text { 1901. pp. 191-197. } \\ & \text { figs. } \end{aligned}$	Red Sea	Fauvel, 1922, p. 494; Kott, 1951, pp. 93-95, figs.	Nereis nichollsi Kott, 1951

In addition, Nereis ruficeps Ehlers (1905, np. 24-25, pl. 3, figs. 10-15) has been described from Chatham Island off New Zealand. It appears
to be a species of Neanthes since notopodia have only spinigerous setae. It differs from other species of Neanthes recorded above in that areas
(?) Nereis neozealandica Benham listed by Knox (1951, p. 213) is presumably a manuscript name only.
CHART II.

Name of species	New locality	More extensive distribution	Ecologic niche
	Victoria at Lakes Entrance	Swan River area, Western Australia	In sandy mud flats, occupying thin, U-shaped
Ceratocephala edmondsi	Kangaroo Island, Sth. Aus.		tubes (B. Dew) Common in muddy and sandy tidal flats: tube
			sandy (S. J. Edmonds)
Ceratomereis mirabilis	Spencer Gulf, S.A.; western shoal in 30 feet	Circummundane in warm seas	In rock and shell gravel, in mud and on reefs (Monro, 1931)
Ceratomereis lapinigensis	Port Willunga, S.A.; Lakes Entrance, Vic.; Pitwater, Broken Bay, N.S.W.	Western Australia (Augener, 1913: Monro, 1939b)	On piles, sponges and bryozoans; along shore to 40 fms. (Monro, 1939b)
Ceratonereis aequisetis		Western Australia at the Swan River area	Along the strand in marine conditions (Augener, 1913)
Ceratonereis erythracensis Cheilonereis peristomialis		Madagascar, and Swan River, W.A. (Monro, 1938) New Zealand and South Australian	Same as for C. aequisetis (Monro, 1938); in coral debris (Okuda, 1940, p. 9)
Micronereis halei	Sellick Beach, Sth. Aus.	New Zealand and South Australian Bight	In gastropod shell with hermit crab, or freeliving (Benham, 1916) At exposed, outer edge of reef (H. M. Hale)
Namanereis quadraticeps	California	Auckland Island (Augener, 1923); New Zealand (Benham, 1909); Southwest Africa (Augener, 1918)	Under stones in varying salinities of high intertidal zones (Augener, 1923)
Nicon aestuariensis	Kangaroo Tilan Sur	New Zealand	Burrows in mud of estuaries with up to 3 hours exposure; number up to 150 per sq.m. (Knox, 1951)
Neanthes vaulii	Kangaroo Island, Sth. Aus.; New South Wales	New Zealand; Tasmania (Monro, 1939a)	Among sand, rock and weed (Knott, 1951)
Neanthes cricogralha	Sellick Beach and Port Adelaide, S.A.; Cronulla, N.S.W.	New Zealand; Western Australia (Knox, 1951, and Augener, 1913)	Interidal to 55 fms .
Neanthes near cricognatha	American River, Kangaroo Island, Sth. Aus.		In colonies of the serpulid, Galeolaria (S. J. Edmonds)
Neanthes kerguelensis	Port Willunga and Sellick, Sth. Aus.	New Zealand: Tasmania and SubAntarctic (Augener, 1924)	On reefs and rocks; in sand (Augener, 1913)
Neanthes oxypoda		Japan; China; South-west Australia (Мопго, 1938)	Mouth of the Swan River, W.A. (Monro, 1938)
Neanthes unifasciata	-	Great Barrier Reef (Monro, 1931)	On reefs (Monro, 1931)
Neanthes angwsticolios	-	Sharks Bay, Western Australia	(Not known)

Name of Species

Name of Species	New locality	More extensive distribution	Ecologi miche
Eumereis marri		Off Southwestern Australia in 62 metres	(Not known)
Nereis falcaria	-	```Ceylon; Madagascar: New Zealand; subtropical (Knox, 1951; Fauvel, 1935, p. 302)```	In sandy loam in 45 fms; under littoral stones (Augener, 1923)
Nereis demhamensis	New South Wales	Southwest Australia and South Australia (Benham, 1916)	Intertidal to 11 metres (Augener, 1913)
Nereis jacksomi	Sellick Beach, Sth, Aus; New South Wales	S. and S.W. Australia; New South Wales (Monro, 1937; Fauvel, 1947; Augener, 1924)	Sandy or rocky shores, shore to 14 metres; on fouling plate in estuary (B. Dew)
Neries thompsoni		Rotnest, Point Peron and Aldritch's Cove, Normalup, W.A.	(Not known)
Nereis perowiensis		Western Australia	Probably rocks (Kott, 1951)
Nereis cockbwrnensis	Kangaroo Island and Sellick Beach, S.A.; N.S.W.	Western Australia	Anong algae and their holdfasts on calcareous rock platforms (S. J. Edmonds) and from stones in rocky pools (H. M. Hale)
Nereis langwida	-	Port Jackson, N.S.W.	(Not known)
Nereis robusta	-	New Zealand	(Not known)
Perinereis amblyodonita	American River, Kangaroo Is.; Port Willunga, S.A.; Port Jackson, N.S.W.	Southern and Western Australia; New Zealand; Indo-Pacific: Knox, 1951 ; Fauvel, 1947)	Under rocks and in mud fats; on piles and mooring chains and in clumps of Galeolaria (S. J. Edmonds and B, Dew)
Perinereis variodenfata	Sellick Beach, S.A.; Port Wynyard, N.W., Tasmania	Western Australia (Augener, 1913)	From stones in rock pools and in limestone reefs ($\mathrm{H}, \mathrm{M} . \mathrm{Hale}$)
Perinereis vallata		New Zealand; Sotuthern Australia (Kıox, 1951)	Intertidal, low water to 3 hour exposure; in mud among stones; in branching, slime-lined burrows (Knox, 1951)
Perinereis brewicirtis		New Zealand; Indo-Pacific; Western Australia (Knox, 1951)	In estuaries; burrows in sand and mud; associated with P. vallata (Knox, 1951)
Perinereis camiguinoides	-	Southern Chile: New Zealand	Intertidal, under stones, to 35 fms . (Knox, 1951)
Perinereis barbara		Port Jackson, N.S.W.	(Not known)
Perinereis ponuiensis		New Zealand; Auckland Islands; North Cape (Augener, 1924)	Under stones along the coast (Augener, 1924)
Perinereis pseudocamiguina	-	Southern Chile; New Zealand; Tasmania (Monro, 1939)	Between tide marks, lower Derwent River, Hobart, Tasmania (Monro, 1939a)

Name of Species

Name of Species	New locality	More extensive distribution	Ecologic niche
Perinereis calmani	Pt. Jackson, Syd, Harbour, Pitwater, Broken Bay and Athol Bight, N.S.W.	China Sea and Eastcrn Australia (Monro, 1926)	Among tuhes of Galeolaria, under rocks in kelp holdfasts and on piles (B. Dew)
Perinereis nigropunctata		Indo-Pacific; North Australia (Augener, 1922); Great Barrier Reef (Monro, 1931)	Associated with Perinereis camiguina (Augener, 1922
Perinereis vancaurica	\square	Great Barrier Recf (Monro, 1931) Philippines and New Zealand (Fauvel, 1923)	(Not known)
Perinereis obfuscata		Philippines; Indo-Pacific; Great Barrier Reef (Monro, 1931)	In lagoon of Great Barrier Reef (Monro, 1931)
Perinereis helleri	-	Indo-P'acific (Okuda, 1940); Great	In coral reef (Monro, 1931)
Perinereis camiguina	-	East and North Australia (Augener 1922); Great Barrier Reef (Monro, 1931	Among coral rocks (Monro, 1931)
Platynereis australis Platynereis dumerilii antipoda	South Australia and New South Wales	New Zealand (Ehlers. 1905; Augener, 1926; Knox, 1951)	Amorig shell fragments and sand, occupying tubes; intertidal to 50 fms. (Knox, 1951) Among algae, on piles, on mooring buoys, on limestone reefs (see below)
Platynereis magalhaensis Platynereis polyscalma	-	Sub-Antarctic and Southern New Zealand (Augener, 1923) Indo-Pacific (Fauvel, 1931); Great Barrier Reef (Monro, 1931)	Among algae and holdfasts (Hartman, 1952, in press) Epitokous stages in plankton
is rottestiova	$\underset{\text { California (see below) }}{\mathrm{New}}$	Hawaii; Northeast Pacific to Western Canada	Among algac and holdfasts
Pseadonereis rottrestiana		Western Australia (Augener, 1913): Japan (Okuda, 1938)	On shallow reefs (Augener, 1913)
Pseudonereis anomala	-	Western Australia (Fauvel, 1922 and Kott, 1951) ; Red Sea (Gravier, 1901) ; East Indies (Horst, 1924)	Under stones (Gravcly, 1927) ; among rocks and weed (Kott, 1951)

CHART III.

Name of species	Unique characteristics	Diagnostic setae	Method of reproduction	Position of modification, if any
Australonereis ehlersi	Ventrum with transverse rows of papillae	Falcigers limited to neuropodia	Presumably direct	
Ceratocephala edmondsi	Long papillace on both rings of proboscis	Falcigers limited to neuropodia	(Not known)	--
Ceratonercis mirabilis	Anterior end of prostomium widely divergent; dorsal cirri very long	Falcigers limited to neuropodia	Epitoky (Horst, 1924 p. 180)	Male at 18/19
Ceratonereis lapinigemsis	Anterior margin or prostomium entire; dorsal cirri not long	Falcigers limited to neuropodia	Epitoky (Kott, 1951, p. 107)	At 14/15 (sex not stated)
Cerutonereis aequisetis	Dorsal and ventral cirri greatly reduced	Falcigers limited to neuropodia	(Not known)	-
Ceratonereis erythracensis	Targe simple falcigers in posterior segmerts	Falcigers both simple and composite, limited to neuropodia	(Not known)	-
Cheilonereis peristomialis	Peristomium prolonged on ventral side to partly envelop prostomium	Falcigers limited to neuropodia	$\begin{aligned} & \text { Epitoky (Benham, } \\ & \text { 1916, p. 142) } \end{aligned}$	Female at 26/27
Micronercis halei	First segment is parapodial and setigerous	All setae of one kind, homogomph spinigers	(Not known)	-
Namanereis quadraticeps	Parapodia uniramous throughoust	Spinigers above and falcigers below	Direct	-
Nicon aestuariensis	Proboscis lacks paragnaths; parapodia biramous	Long-appendaged heterogomph falcigers in ncuropodia	Epitoky (Knox, 1951)	Body with 3 regions: 20 anterior, a median, and 20-30 posterior segments
Nementhes vaalii	High paragnathal count; parapodial lobes moderately small	Falcigers limited to neuropodia	- Epitoky	Male at 18/19: Female at 20/21; with 2 body regions

Name of Species	Unique characteristics	Diagnostic setae	Method of reproduction	Position of modification, if any
Neanthes cricognatha	Oral ring of proboscis with continuous ring of cones	Falcigers limited to neuropodia	(Not known)	-
Neanthes near cricognatha	Oral ring with one row of large and many rows of tiny cones	Falcigers limited to neuropodia	(Not known)	-
Neanthes kerguelensis	Notopodial lobe diminishes in posterior segments	Falcigers limited to neuropodia	perhaps direct. (See Benham, 1916, page 133)	-
Neanthes oxypoda	Notopodial lobes enlarges greatly on both sides of base of dorsal cirrus	With spinigers only; falcigers absent	(Not known)	-
Neanthes unifasciata	Area V lacks paragnaths; dorsum with broad brown bands	Falcigers limited to neuropodia	Epitoky (Horst 1924	Male at J6/17; Female at 18/19
Neanthes angusticollis	Dorsal lobe of posterior notopodia is triangular with dorsal cirrus attached at middle	Falcigers limited to neuropodia	(Not known)	-
Etinereis marri	Maxillary ring of proboscis lacks paragnaths	Notopodia with falcigers in which appendange is 2- or 3-dentate	(Not known)	- .
Nereis falcaria	Prostomium incised in front: oral ring bare or with few paragnaths	Notopodial falcigers with appendage coarsely 2 - or 3dentate	Epitoky (Augener, 1914, p. 327)	Body with 3 regions in male; parapodial changes at 13/14 and last 50 segments unmodified
Nereis denhamensis	Notopodial lobe little reduced	Notopodial falcigers coarsely 2 - or 3-dentate	Epitoky (Kott, 1951)	Body with 2 regions; change at $14 / 15$ (sex not stated)
Nereis jacksomi	Notopodial lobe diminishes rapidly in back; proboscis with few cones	Notopodial falcigers coarsely 2 - or 3-dentate	Absent or present (?) (Kott, 1951, p. 97)	At 13/14 (sex not stated)
Neries thompsoni	Paragnathal count higher than in N. denhamensis	Notopodial falcigers coarsely dentate	Direct	-

Name of species
Nereis peroniensis
Nereis cockburnensis
Nereis languida
Nereis robusta
Perinereis amblyodonta
Perinereis variodentata
Perinereis vallata
Perinereis brevicirris
Perinereis camiguinoides
Perinereis barbara
Perinereis pontiensis
Perinereis pseudocamiguina
Perinereis calmani

Name of Species	Unique characteristics	Diagnostic setac	Method of reproduction	Position of modification, if any
Perinereis nigropunctata	Area I with to 7 paragnaths; posterior notopodia prolonged in upper part	Falcigers limited to neuropodia	$\begin{aligned} & \text { Elitoky (Horst } 1889 \\ & \text { p. 171) } \end{aligned}$	Male at 15/16; Female at 18/19
Perinercis vancaurica	Area VI of proboscis (see Chart IV)	Falcigers limited to ncuropodia	(Not known)	
Perinereis obfuscata	Area VI of proboscis with a singlc curved ridge	Falcigers limited to neuropodia	Epitoky (Mouro, 1931 p. 16)	Male at 13/14; Female at 17/18
Perinereis helleri	Area III of proboscis (see Chart IV)	Falcigcrs limited to neuropodia	(Not known)	$\underline{\square}$
Perinereis camiguina	Area III of proboscis (sec Chart IV); dorsal cirri short (Monto, 1931, p. 15)	Falcigers limited to neuropodia	(Not known)	-
Platynereis australis	Natatory setae in female from setiger 30 ; homogomph falcigers present in some notopodia	Homogomph falcigers with long, slender appendage	Epitoky (Schmarda, 1861; Ehlers, 1904 and others)	Fcmaie at 30/31; Male at 19/20, or at $23 / 24$ (see below)
Platynereis dumerilit antipoda	Acicula light to dark brown; dorsal and ventral cirri thick at base, slender distally; spinigers short-appendaged	Notopodia with homogomph falcigers and spinigers	Epitoky (see below)	Female at 22/23
Platynereis magalhaensis	Notopodial falcigers absent or inconspicuous	Notopodia with spinigers, neuropodia with spinigers and falcigers	Epitoky 1897) (Ehlcrs	Male at 20/21; Female at 25/26
Platymereis polyscalma	Transversely ribbed sctae in far posterior segments; cpitokes with greatly prolonged prostomium	Notopodial setae ribbed in distal ends	Epitoky (Chambcrlin, 1919, p. 225)	Male at 14/15; Female at 22/23
Platynereis bicanaliculata	Notopodial falcigers conspicuous and usually dark at tip	Notopodia with simple falcigers; neuropodial falcigers composite	Epitoky (sce below)	Male at $20 / 21$ or $21 / 22$
Pseudonerris rottrestiana	Posterior notopodial lobes long, rectilinear; areas V and VI of proboscis (see Chart IV)	Homogomph falcigers absent; heterogomph falcigers in neuropodia	(Not known)	-
Pseudonereis anomala	(Similar to P. rollmestiona)	Homogomph falcigers precint; heterogompl falcigers in neuropodia	$\begin{aligned} & \text { Epitoky (Gravier, } \\ & \text { 1901, p, 195) } \end{aligned}$	Female at 16/17

PARAGNATHAL	PROCESSES	ON MAXILI	CHART IV LARY (I.-IV.) AND	ORAL (V.-VIII.)	RINGS	OF THE	PROBOSCIS
Name of species	Area I.	Area II.	Area III.	Area IV.	Area V.	Area VI	Areas VII \& VIII
Australonereis ehlers: (See below)	Maxillary ring covercd with long, slender papillac in one row				0	0	0
Ceratocephala edmondsi (See below)	One long papilla	0	5 cirriform papillae in one row		0	One papilla	9 cirriform papillae in one row
Ceratonercis mirabilis (Augener, 1913, p. 170)	0	2 to 16 cones	About 10 cones	About 16 cones	0	0	0
Ceratonereis lapinigensis (Augener, 1913, p. 167)	0	7 to 10 in a double row	4 to 7 in a transverse rectangle	12 to 14 in a triangle	0	0	0
Ceratonereis aequisetis (Augencr, 1913, p. 173)	$3-4$ in tandem, or $6-9$ in a group	Many in a crescent	A broad group	A transverse group of $5-7$ rows	0	0	0
Ceratonereis erythraeensis (Fauvel, 1919, p. 408)	$\begin{gathered} \text { group } \\ 2 \text { to } 6 \\ \text { small } \\ \text { cones } \end{gathered}$	2 curved rows with about 12 cones	Many in several irregular rows	Many in a group and continuous with II. and III.	0	0	0
Cheilonereis peristomialis (Knox, 1951, p. 223)	1 or 2 in tandem	3 rows in a transverse patch	3 rows in a transverse patch	A rectangular patch	0	Oval group of 2 or 3 curved rows	A continuous band of many paragnaths
Micronereis halei (See below)	0	0	0	0	0		0
Namanereis quadraticeps (Benham, 1909, p. 242)	0	0	0	0	0	0	0
Nicon aestuariensis (Knox, 1951, p. 225)	0	0	0	0	0	0	0
Neanthes vaalii (Augener, 1913, p. 152, and below)	$\begin{gathered} 1 \text { or } 2 \\ \text { in tandem } \end{gathered}$	$\begin{aligned} & 10-12 \text { in about } \\ & 3 \text { rows } \end{aligned}$	About 25 in 2-4 rows	About 30 in a large group	3 in a triangle or 4	4 in a rectangle or 2-3	A band of about 60 cones in 2-3 rows, continuous with VI.

Name of species	Area I	Area II	Area III	Area IV

Name of species	Area I	Arca II	Area III	Area IV	Area V	Area VI	Areas VII \& VIII
Nereis thompsori (Kott, 195l, p. 104)	1 or 2 in tandern	2 oblique rows	4 cones with 3 in a row and 1 behind	About 20 cones in 2-3 irregular transverse rows	3 large cones in a triangle	4 cones in a rectangle	A row of larger cones and many smaller ones in about 6 rows behind
Nereis peromiensis (Kott, 1951, p. 101)	"Similar to that of Nereis jacksomi."-Kott.						
Nereis cockburnensis (Augener, 1913, p. 155 and below)	0	8 in an oblique double row	2 in tandem	5-11 in a triangular patch of 2-3 rows	6 in 2 rows in 2π oval patch	5 large cones in a circle or cross	A broad band of many cones, 5.7 deep below and
Nereis languida (Kinberg, 1866, p. 169)	(Unknown)						
$\begin{aligned} & \text { Nereis robusta } \\ & \text { (Quatrefages, 1865, p. } \\ & 545) \end{aligned}$	(Obscure: Buccal ring	the are with		gnaths of maxillary and 2 lateral groups	ring much on dorsal	smaller than th side; maxillary	ose of oral ring. ring with a band,
Perinereis amblyodonta (Knox, 1951, p. 222)	2-4 cones in tandem	3-4 rows in a triangular patch	A triangular patch	A triangular patch	Usually 5 with a central one \& 4 behind	A single curved ridge	About 50 cones in 2 irregular rows
Perinereis variodentata (Augener 1913, p. 181 Kott, 1951, p. 112)	10 to many or only 3	About 9 in 2 oblique rows	Only 2, or a transverse patch of 2 rows	About 12 in 3 sows	$\begin{aligned} & { }^{6} \text { cones } \\ & \text { in } 2 \text { row } \end{aligned}$	2 transverse ridges on each side	About 80 cones in 5-6 rows below, to only I row at
Perimereis vallata (Knox, 1951, p. 219; Augener, 1913, p. 178)	$1-3$ cones	$6-10$ cones	About 14 cones in a cluster	About 20 cones in a cluster	1 set far back, or 34 in a triangle	7.9 or $8-20$ in a transverse row	3 alternating rows of cones that may be flattened
Perinereis brevicirris (Knox, 1951, p. 220)	$1-3$ cones	A triangular eluster	Quadrate patch with 1-3 cones on each side	A crescentic cluster	3 in a triangle or 4	10-20 conical or flat cones in a trans-	3 irregalar transverse rows or a few more
Perinereis camiguinoides (Knox, 1951, p. 221)	1 large cone	Oblique group of 2-3 rows	3-6 smaller cones	Oblique group of $7-15$ cones	3 large cones in triangle	2 (or 3) long transverse ridges	Up to 50 large and small cones in 2-3 rows

Name of species	Area I	Area II	Area III	Area IV	Area V	Area VI	Areas VII \& VIIt
Perinereis barbara (Monro, 1926, p. 317)	2 in tandem	Oblique patclı of about 12 in 2 rows	Small group of 9 (or 14)	Large crescentic group	8 cones in a cross	A transverse ridge	A transverse band about 4 (to 8-9) deep
Perinereis ponuiensis (Augener, 1924, p. 351)	1 or 2 in tandem	10-11 in 2 rows, or only 5 cones	10 (to only 4) at middle and 1 isolated at each side	27 (or only 12-13) in 3-4 rows	one only	4 ridges on each side	25 cones in 2 rows widely separated from Area VI.
Perinereis fseudocamiguina (Augener, 1924, p. 340)	2 in tandem	8-10 in an oval patch	11 in 4 transverse rows in an oval group	27-28 in a triangular group	3 cones in a triangle	1 transverse ridge	About 42 cones in a band of 3 rows
Perinercis calmani Monro, 1926, p. 319)	2 in tandem	An oblique double row	A small transverse group	About 3 rows in an oblique group	0	1 transverse ridge	An irregular row of 10 to 12 cones
Perinereis nigropunctata (Augener, 1922, p. 25)	7 in quadrate group	17 in a double or triple row	About 23 in an oval patch	About 23 m a cres. cent or in 4 rows	3 in a triangle	1 ridge distally pointed	About 33 in 2 rows, to only 1 row at the sides
Pervinereis vancourica (Augener, 1922b, p. 23)	2 in tandem	Many small cones	3 groups, a median large, and a pair or small, Iateral ones	Many small cones	3 in a triangle	2 ridges on a side	2 broad bands, an anterior with larger and smaller cones, and a posterior with larger concs; continuous with VI,
Perinereis obfuscata (Monro, 1931, p. 18)	5 cones in a cross	Ubout 25 in a triple row	Abuot 25 in a transverse patch	About 20 in an oblique patch	one large	1 ridge on each side	A double row
Perinereis helleri (Monro, 1931, p. 14)	2 in tandern	7 in subquadrate patch	3 groups; a median one of 9 concs, and 2 in tandem on each side	About 10 in an oval patch	2 in a triangle	A transvcrse ridge on each side	About 17 in an irregular double row
Perincreis comiguina (Monro, 1931, p. 15)	(As in Perinereis helleri, see above)						
Platynereis australis (Knox, 1951, p. 224)	0	0	4-5 interrupted lines of pectinae in a small transverse group	Several rows of pectinae (the most conspicuous area)	0	A small patch of 3-4 imperfect lines	5 small groups of minute pectinae

Name of species	Area I	Area 11	Area 111	Area IV	Area V	Area VI	Areas V1I \& VIII
Platynereis dumerilii antipoda (See below)	0	0	As in P. australis	As in P. australis	0	2-3 close imperfect lines	as in P. australis
Platynereis magalhaensis (Hartman, 1948, p. 60)	0	0	3 interrupted rows of pectinae	5 longer and 2 shorter rows of pectinae (the most conspicuous area)	0	3 long rows of fine prectinae	About 5 trans verse, well-separated series of pectinae
Platynereis polyscalma (Fauvel, 1932, p. 115)	0	0	pectinate clusters	pectinate clusters	$\begin{aligned} & \text { none or } \\ & \text { one } \end{aligned}$	A pectinate cluster	A double row
Platynereis bicanaliculata (See below)	0	0	A broad area, 4-5 transverse rows of pectinae	7-8 rows of pectinae (see below)	0	2 irregular transverse rows of pectinae	A continuous nar row band of pec tinae
Pseudonereis rotinestiana (Augener, 1913, p. 186)	1 cone only	3-4 irregular rows of pectinae or part of another row	4 rows of many pectinae in an irregular rectangular area	4-5 rows of many pectinae or also 5 single cones	0	5-6 cones in a transverse row	About 16 to 19 large cones in a row, or in an al ternating double row
Pseudonereis anomala (Fauvel, 1922, 494; Kott, 1951; p. 93)	(Similar to that of Pseudonereis rottnestiana, above.)						

Key to Genera and Species

1 Parapodia uniramous in. in Namunercis quadraticep.2 First segment a smooth ring (fig. 12)Peristomium prolonged forward ventrally to encompass the prostomium
Cheilonereis peristonialis 4
Peristomium not prolonged forward 44 Ventrum of anterior segments with rows of pagillae (fig. 2) Australonereis ehtersi
4 Ventrum without rows of papilliseProboscis with fleshy, cirrus-like papiliae (fig. 13) Ceratocothala edmondsiProboscis with dark horny paragnatlis on some or all areasProboscis without processes, its epithelium smooth or at most wrinkled
Nicon uestuatiensis
6 Paraguaths absent from oral ring of proboscis Ceratonereis 11
6 Paragnaths absent from maxillary ring of prohoscis Eunereis marri
6 Paragnaths typically presett on both orat and maxillary rings of proboscis
77 Paragnaths in the form of pectinated rows on some or all areas
7 Paragnaths in the form of contical, separated processes 9
8 Maxillary ring with conical, and oral ring wilh pectinated processes Pseudomereis 14
8 Thoth rings of proboscis with pectinater processes, or areas 1, il and V ustally bare Platynereis 13
Area VI of proboscis with transverse fidges, of the ridges broketi up into points ina straight transverse row Perinereis19
9 Area VI of proboscis with conical processes ..., .- 10
10 Median and nosterior notopodia with falcigers (fig. 30) or also spinigers,... Nereis 2111 Prostomium deeply incised at midfront; dorsal cirri very long Ceratonereis mirabilis12 Neuropodia with simple and composite falcigers Ceratonereis erythracensis12 Neuropodia without simple falcigers13 Dorsat and ventral cirri greatly reduced; area 1 of proboscis with 3-4 or to 6-9.pointed paragnaths Cerafonereis aequisetis
13 Dorsal and ventral cirri not greatly seduced; area I of prohoscis bare
Ceratonereis lapinigensis
14 Notopodia without homogomph falcigers.

\qquad
Pseudonereis rotmestianas14 Notopodia with homogomph falcigers in posterior segments Psendonereis anotralaNotopodia with simple, heavy falcigers (fig. 38) in median and posterior segments.Platynereis bicanaliculata16
16 Posterior notopodia with composite setae in which the aypenditge is strikinglyridged transversely Platynereis pulyscalma16 Posterior notopodia witbout setae that are distally ridged ...
17 Posterior notopodia with homogoniph falcigers (fig, 37) 1817
17 Postrior mopodia without faligers or ooly (an, al inconspicuous one
Plafynereis mumalhoensis18 Modified natatory marapodia in iemale present after segment 22
Platynercis dunterili ancipoda
18 Modified natatory parapotia in female present after segment 30
Platynercis akstralis
19 Area VI of proboscis with a single ridge on each side(Includes Perineveis amblyodonta, barbara, calmani, helleri, cami-guina, obfuscata, nigropunctata and psestocamiguinu. See Chart IVfor distinguishing characteristics of each.)

Area VI of proboscis with two ridges on each side
(Includes Perinereis camigninoides, variodentafa and vancaurian. See Chart IV fot distinguishing characteristics.)
19 Area VI of proboscis with four ridges on a side Perinercis ponuiensis
Area VI of proboscis with a continuous transverse series of cones that extends across areas V and VI
(Includes Perimereis vallata and bevvicirris. See Chart IV for distinguishing characteristics.)
Notopodial lobe diminishes in size (fig. 26) in posterior segments
20 Notopodial lobe does not diminish in size posteriorly

Australonereis, new genus

Type A, shlerss (Augener), 1913

This differs from other mereid gencta most strikingly for having paired fleshy transverse ridges (fig. 2) on the ventrum of anterior segments. The armature of the proboscis consists of paired distal jaws and soft papillae on the maxillary ring only; the oral ring is bare. The first segment of peristomium is a smooth, apodous ring. The first two parapodial segments are uniramous; all others are biramous. Notopodia have spinigerous, composite setae and single acicula; neuropodia have spinigers and falcigers. In ovigerons adults the median and posterior segments have paired, papillar processes, presumably coelomostomes, located on the dorsal side of notopodia, within the base of the dorsal cirrus.

Australonereis approaches Tylonercis Fauvel (1911, p. 376) in its pharyngeal strictures, but in the latter all setae are homogomph spinigers. Leomnates Kinberg (1866, p. 168) also has membranous processes on the proboscis, but they are limited to the oral ring, whereas the maxillary ring has horny paragnaths. A single species, A. chlersi (Augener) is referable to it.

Australonereis eililersi (Augener) 1913

Fig. 1-1 1
Nereis (Leonnates) Chlersi Augener, 1913 pp. 142-145, pl, 3, fig. 53, text-fgg $12 \mathrm{a}-\mathrm{c}$.
Leonnates ehtersi and Leptonereis chlersi Monro, 1938, pp. 618-623, fig. 7-13.
Locolity-Numerous individuals come from Lakes Entrance. Victoria, on the inner side of Ninety-mile Beach, where there is a considerable tidal current, and where the water is marime, from a sand spit uncovered at low tide; the worms form beds and occupy U-shaped tules in which the ends are uncovered (observations by Miss Barbara Dew)

Australonercis ehlersi has remained known only through sparse catches from the Swan River area, Western Australia. The present numerous individuals come from Lakes Entrance, Victoria. They are conispicuously large, measure to 140 mm . long and 12 mm , wide with parapodia. The body is greatly depressed, especially in its ntedian and posterior regions. The following description is based on specimens from Victoria.

On the everted proboscis the oral ring is dusky and smooth or irregularly rugose; it lacks processes. The maxillary ring is pale and has a continuous band of many, more than 50 , short, cirrus-like processes in 3 to 5 irregular rows.

Fig. 1-6. Australonercis ehlersi

1. Anterior end in dorsal view, including first 3 setigers, $\times 10.5$.
2. Ventral side of body showing segments 10 to $17, \times 5 \cdot 2$.
3. Anterior parapodium from papillated region, seen from the front, $\times 10.5$
4. A parapodium from the middle region of the body, seen from the front, $\times 10 \cdot 5$.
5. A slightly more posterior parapodiam seen in posterior view; $\times 10.5$.

6 A far posterior parapodium showing the large coelomostome adjacent to the small dorsal cirrus, $\times 51$.

They are fewest at the sides and most nutncrous midventrally; those on the oral end are slightly larger than those on the maxillary one. They are limited to a band that separates maxillary and oral parts, giving the impression, especially on the retracted proboscis, of being oral, not maxillary (hence Augener's observation that they are oral). The jaws are translucent, light yellow to horny brown distally; they have 7 to 9 short, oblique teeth along the cutting edge.

The first 6 parapodial segments have each a slender ventral cirrus on a papillar elevation. From the seventh segment the ventrum has an additional elevation within the base of the ventral cirrus and on the next 9 or 10 segments these papillations increase to about 6 or 7 on a side (fig. 2). The ventrum in this region is rugose. After segment 30 the papillations diminish rapidly and are absent from posterior segments.

Parapodia of the first 17 to 19 segments differ from those farther back in that their distal lobes (both notopodia and neuropodia) are thick and glandular. The glands are most conspicuous at anterior sides of parapodia and reach their maximum thickness and extent in segments 10 to 18 , where the uppermost lobe comes to be transversely rugose and resembles the furrows of the ventram in the same region. After about segment 20 these parapodial areas are abruptly absent. Dorsal and ventral cirri arc slender, short and inconspicuous; they are simple and tapering throughout the body.

Setae are in thick, yellow fascicles and most numerous in anterior segments. Those in notopodia are entirely spinigerous (fig. 11). Neuropodia have both spinigers and falcigers (fig, 7-10). The latter have a cutting edge with a single series of denticles (fig. 7,9); they terminate in a curved process that is bounded by a series of denticulations continuous from the cutting edge. Acicula occur singly in parapodial rami; each is a slender, distally tapering, straight black rod; the deeply embedded base is pale.

In postmedian segments, from about segment 50 in shorter, to about segment $68-70$ in longer, individuals, there is present, immediately within the base of the darsal cirrus, a papillar organ which comes to increase in size to surpass that of its corresponding dorsal cirrus (fig. 6): its distal end is penetrated by a pore. By means of microtome sections (1) it is possible to trace ducts which penetrate these papillae, and to follow their course into the coelomic spaces. Occasionally ohe can find larger ova in the cut. It can hardly be doubted but that these are coelomoducts which function at maturity for release of gonadial products Whether primitively retained from ancestral stages, of secondarily derived might be determined from a study of the development of this species. Among the numerous individuals examined, I have found only ovigerous ones, all showing the coelomostomes present from an anteromedian region to the posterior end of the body.

In this connection it is interesting to recall a statement by the late E.. S. Goodrich (1945, p. 173) : "In species of Nercidae, co-existing with metartephridia are a pair of specialized coelomostomes, the soncalled 'dorsal ciliated organs.' ... They occut in all species but may vary somewhat in size. They appear in the young, persist throughout life, though in the heteronereid phase they are usually reduced or absent. That this 'dorsal ciliated organ' is indeed the representative in the Nereidae of the coclomoduct or genital funnel of the Capitellidae and other Polychaeta, . . . there can now be no doubt . . . But it has lost its original genital function in the Nereidae, no longer requires an opening to the exterior, and has become converted into a 'ciliophagocytal organ,' at all events in the majority of species in which the genital products are known to escape by dehiscence... It is possible, however, that some species still exist which have no specialized epitokous stage, and that in them the coelomostomes stifl function as genital ducts."

[^1]It seems probable that Australonereis ehlersi is indeed such a species in which the dorsal ciliated organ is replaced by the coelomostome, and that it functions as a genital duct, acquiring an opening to the exterior. There is no indication of epitoky or parapodial transformation in the individuals that have been examined.

The pygidium is a terminal, dark brown collat; a pair of long, cirriform processes is inserted ventrally; each is about as long as the last 10 segments.

Fig. 7-11
Australonereis chlersi
7. Neuropodial falciger seen from the side, $\times 521$.
8. Distal end of a neuropodial falciger showing details of cutting edge and terminal fang, $x 2010$.
9. Neuropodial falciger seen from the cutting edge, showing arrangement of single row of denticulations, $\times 521$.
10. Distal end of a neuropodial falciger seen from the cutting edge, $\times 2010$.
11. Portion of a homogomph spiniger seen from the side, the tapering pointed tip not shown, $\times 521$.

Australonereis ehlersi was first assigned to the genus Leonnates (Augener, 1913) and later to Leptonereis (Monro, 1938, p. 618). Augener thought that the oral ring is papillate; Monro found the maxillary ring to have papillae. Augener foutnd no falcigers above the neuroaciculum; Monro found them in anterior segments; Augener called the falcigers heterogomph; Monro said they are nearly to quite homogomph. These discrepancies can readily be attributed to subjective interpretations. The species cannot be assigned to Leonnates Kinberg or

Leptonereis Kinberg. In the first the maxillary ring of the proboscis has horny paragnaths; in the second the proboscidial rings are both bare.

Australonereis ehlersi is now known from oppasite sides of the southern half of Australia, at Swan River, Western Australia and Lakes Enlrance, Victoria.

Ceratocephala Malmgren, 1867, emended
Type C. Loveni Malmgren
The generic diagnosis is here expanded to include species in which the pharyngeal papillar processes are present on both rings of the proboscis instead of only the oral ring (see Hartman, 1952, pp. 15-18, for detailed account).

Ceratocephala edmondsi; n. sp.

Fig. 12-17
Locality-American River, Kangaroo Island, South Australia; very common its the sand of a cockle (Katelysia sp.) bank (9 specimens), coll. S. J. Edmonds.

Length of a larger, posteriorly incomplete, individual is $27-39 \mathrm{~mm}$; width at the widest (anterior) part is 3-4 mm.; numher of segments is more than 60 . The general colour (preserved) is pale with melanistic spots on dorsal and ventral sides; it resembles that of species of Platynereis. The prostomium has two pairs of eyes that are large, subequal, in trapezoidal arrangement; the anterior ones are wider apart. The proboscis (everted) shows the following parts: area I (fig. 12) has one papilla, II and V are bare; III and IV together have 5 cirriform papillae in a transverse row; V1 has a single papilla on a side; VII and VIII have 9 cirriform papillae in a transverse row (fig. 13). Jaws are thin, translucent, horny brown; they have 7 to 9 shallow crenulations at the cutting edge.

The first 2 parapodia on a side are uniramous; each has composite spinigers and falcigers; succecding parapodia are biramous. From the third a notopodium is developed and has a full fascicle of composite spinigers. At the eighth or ninth notopodium there are 15 to 20 spinigers and single black acicula. Neuropodia have a supra-acicular bundle of about 10 spinigers and 9 falcigers, and single black acicula that taper distally and are turned upward at the tip. The sub-acicular setal bundle has about 14 falcigers (fig. 16) and 7 spinigers (fig. 17). Dorsal and ventral cirri are simple throughout. A fiftieth parapodium is shown in fig. 14 and an eighth one in fig. 15.

The habitat is sandy beaches in which cockle shells occur; the nereid nccupies a sandy tube coustructed with a thin, gelatinous matrix (observation by Mr. S. J. Edmonds).

Ceratocephola edmondsi differs from other species of the genus in that the maxillary ring of the pharynx has papillae instead of lacking them; ventral cirri are simple throughout, instead of double on some or all segments. The genus is a small one, known for only 5 or 6 other species or subspecies (Hartman, 1952, p. 19) from widely scattered parts of the world. C. ednondsi is the only one known from Australia. C. sibogae Horst, off Dutch East Indics, is the nearest in geographic range. It is clearly scparable from C. ednondsi in its pharyngeal processes in that the former has papillae nearly absent, with orly 2 present on area V .

It is a pleasure to dedicate the species to its collector, Mr. S. J. Edmonds of the University of Adelaide, Sonth Australia.
C. edinondsi is known from only one bocality, American River, Kangaroo Island, South Australia, littoral.

Fig. 12-17. Ceratocephala edmondsi
12. Anterior end with everted proboscis and first 6 setigers, in dorsal view, $\times 15$.
13. Anterior end with proboscis everted, in ventral view, $x 15$.
14. Fiftieth parapodium seen from the front, $x 45$.
15. Eighth parapodium seen from the front, $x 45$.
16. Neuropodial falciger from a posterior parapodium, $\pi 700$.
17. Articulating portion of a spiniger, seen from the side, $x 700$

Micronereis Claparede, 1863

Type M. variegata Claparède
Micronereis halei, n.sp.
Fig. 18-21
Locality-Sellick Beach, South Australia, at outer edge of reef, 16 January 1936, at low tide from stones in rock pools (12 individuals), coll, Mr. H. M. Hale and Mr. K. Sheard.

This is a small, white species, greatest length is about 7 mm . ; width 0.55 mm , without and 0.85 mm . with parapodia. Number of segments is 20 to 25 . The prostomium is broadly quadrate (fig. 18); its posterior margin is clearly marked off from the first segment. There are 2 pairs of lenticulated eyes, with the antcrior pair slightly larger and wider apart than the posterior one; all are similar in that the basal part is dark red and there is a large, spherical pale lens. The frontal margin of the prostomium is weakly indented, and the small oval paired palpi can be seen only by viewing the prostomium, from below. There are no prostomial frontal antennae. The four pairs of tentacular cirri are directed forward and outward; all are similar with slight variation in length; the antero-ventral pair are shortest and the dorsal posterior pair are longest. All 8 are on shott bases (not shown in fig. 18). Each has a slight subdistal swelling, diffusely brown in colour, with a simulted articulation just below the brown pigment.

The first segment has uniramous parapodia in which the setal lobe is long, compressed, directed laterally; it has a cirriform ventral cirrus that is attached near the middle of the parapodial base; it extends distally not as far as the lobe. Stumps of 8 to 10 slender setae and single acicala are visible. The second parapodium is similar to the first but a little larger.

The third and successive segments have biramous parapodia. Notopodia and neuropodia are widely separated from each other. The dorsal cirrus is a long, cirriform process at the upper, outer edge; the ventral cirrus is similar but somewhat shorter and attached near the middle of the lower base of the parapodium. In addition, both notopodia and neuropodia have a long, digitate lobe that extends distally, attached one at the inferior outer edge of the notopodium, the other at the superior outer edge of the neuropodium (fig. 20). These Inbes resemble dorsal and ventral cirri but they are not so thick and extend laterally, not quite as far as the cirri. Acieular lobes are compressed, broadly triangular and have an acute tip.

All setae are homogomph spinigers (fig 2) with the longest appendages several times as long as the shortest ones. The uppermost have the longest appendage and the length diminishes gradually ventrally. Notopodia have 15 to 25 spinigers and single yellow acicula. Neuropodia have 15 to 20 spinigers and single yellow acicula.

The pharyngeal apparatus (seen only by dissection since the proboscis was not everted on any individual) is a subspherical, muscularized mass. It conmects distally with the mouth and proximally with the thin-walled, alimentary tract, There are no paragnaths, A pair of large translucent, yellow jaws are inserted, one on either side of the muscular tissue. Each jaw is broadly ovat at the base and continued distally to end in about 6 triangular teeth along the concave cutting edge (fig. 19). If the jaws are dimorphic in this species as they have been described for M. variegata Claparêde (Racovitza, 1893), it may be presumed that the description is based on the jaws of a female individual.

The only other known species of the genus is Micronereis viriegata Claparède, from the Mediterranean Sea, more widely recorded from western Canada (Betkeley and Berkeley, 1948, p. 60), though with some doubt. M. variegaia Claparede differs from M. hale: in that digitate lobes are lacking from the inner,

Fig. 18-21. Micronereis halei
18. Anterior end in dorsal view, proboscis retracted, $x 94$.
19. An entire jaw plate showing distal toothed edge and embedded part, $\times 417$.
20. A median parapodium in posterior view, $\times 62.5$,
21. Spinigerous seta from a median parapodium, x 1638 .
proximal margins in the first; the pharyngeal jaws lack the broad base, and the first parapodia have conspicuous tufts of setac. Prostomial and peristomial structures also differ (see Fauvel 1923, pp, 332-333, for illustrated account).

It is a pleasure to name this species for its collector, Mr. Herbert M. Hale, Director of the South Australian Museum.

Micronereis halei has been found only from littoral zones in South Australia.
Namanerets Chamberlin, 1919
Type N. quadraticeps (Blanchard)
Namanereis quadraticeps (Blanchard), 1849
Lycastis quadraticeps Benham, 1909, pp. 242-244, pl. ix, fig. 2-10.
This brackish nereid was first described from Chile. Benham (1909, p. 244) recorded it from Campbell Island, on shore near the exit of a creek from the Hank of Mount Honey; the shore above high-water mark is traversed by numerous little watercourses oozing through the eatth above (Benham) ; also in sea pools. Benham's detailed description compares so favourably with individuals I have examined from southern and central California, from a similar brackish niche, that specific identity seems probable, The only differences I can find are these: The pygidium shown by Benham (his fig. 5) as a constricted collar with a pair of divergent lateral processes, is shorter and has a longer ventral lobe with the anal aperture between the upper and lower parts; the ventral portion has a pair of small, oval papillae inserted at the distalmost margin. Neuropodial faicigers are shown by Benham with a single series of subequal crenulations at the cutting edge; I see a single row of teeth that are longest neat the base and diminish in size to near the distal third. The pharyngeal jaws have teeth that are long, sharp, obliquely inserted. These differences may have no specific importance.

Namanereis quadraticeps may be expected to occur in high intertidal zones of the southern shores of Australia; it should be sought especially in zones where there is only a light spray of sea-water,

Nennthes Kinberg, 1866
Type N. vaalil Kinberg
The collections have made possible an examination of the type species from the type locality, for a genus which is widely represented in littoral zones of the Northern Hemispdere. Both atokal and epitokal individuals of both sexes are represented. The account below is based on these collections.

Neanthes vanlif Kinherg, 1866
Fig. 22-25
Neanthes vaalii Kinberg, 1866, p. 171.
Nereis albanyen.sis Augener, 1913, pp. 149-153, pl. ii, fig. 6, text fig. 14,
Neanthes valiii Augener, 1922, pp. 20-21.
Localities-American River, Kangaroo Island, in mud flats (5 individuals), coll. S. I. Edmonds; Port Adelaide, in tidal river (2 male and 8 fernale epitokes), coll. S. J. Edmonds; Rushcutters Bay, Port Jackson, scraped off hull of a yacht, 6 Oct. 1950. (1), coll. B. Dew ; Athol Bight, public jetty, off piles, 12 Oct. 1950, (2), coll. B. Dew; Milsons Point, Port Jackson, off piles and mooring chains, 23 Oct., 1950, (3), coll. B. Dew; Venus Bay Inlet, Eyre Peninsula, South Australia, associated with clusters of Modiolus, (3), coll. S. J. Edmonds; Point Wynyard, roth-west Tasmania, Apr. 1936 (4 tiny individuals), coll. H. M. Hile and N. B, Tindale.

Preserved, the pigment pattern resembles that of Platynercis species in having dark segmental spots over the dorsum and parapodia. Length of atoke individuals (preserved) is 70 mm . Notopodia have spinigers only; neuopodia have a supraacicular fascicle of homogomph spinigers and heterogomph fakigers, and a subacicular fascicle of heterogomph spinigers and heterogomph falcigers (fig. 25). There are no notopodial falcigers.

In male epitokes the first 7 segments have thickened dorsal cirri; the first 18 segments are otherwise unmodified, or the eighteenth is sightly changed with a Jew accessory lobes, Natatory setae are present from segment 19. Natatory parapodia are present to the end of the body; the pygidium has a rosette of many similar, slender papillae. Overall size is somewhat less than that for the female which measures to 50 mm . long.

Typical natatory parapodia (fig. 24) have dorsal cirri that are crenulate, and accessory lobes. In epitokal females modified natatory setae are present from segments 21 to 89 ; parapodia from 90 to 102 (posterior end) differ in having only single dark acicula in each ramus (setae lacking) ; the body terminates in a pygidium with a constricted smooth collar.

In mature individuals the 4 prostomial eyes are enlarged, arranged in a rectangle; each is a circular convex disk, purplish red at the periphery, fading centrally; each has a tiny white circular lens.

In atokal individuals the notopodia lack conspicuous preacicular and posiacicular lobes such as characterize northern representatives of the genus Neanthes. notably N. virens (Sars) and N. braydti (Malmgren): Median (fig. 22) and posterior (fig. 23) parapodia are similar to one another.

The pharyngeal processes (based on a female epitokal individual from Port Adelaide) are arranged thus: I has 2 cones in tandem; Il has 10 cones in a triangular area; III has about 22 cones in a broadly oval patch; IV has a large crescent of about 30 cones of larger and smallet cones; area V has 3 cones in a triangle; VI has 3 cones in a transverse line; VII and VIII (continuous) have 2 or 3 irregular rows of 30 or more cones.

Nereis albanyensis Augener, 1913, p. 152, from Western Australia has been referred to Neanthes vaalii Kinberg (Augener, 1922, p. 20). Nertis (Neanthes) albanyensis Kott (1951, p. 106) from Point Peron, Western Australia, is another species and belongs to the genus Nereis, s. s. since there are dorsal falcigers in notopodia.

The distribution of Neanthes vaolii is indicated in Chart II.
Neanthes, near cricognatha (Ehlers) 1905
Nereis cricognatha Ehlers, 1905, p. 29; Augener, 1913, pp. 163-164.
Nearthes cricognatha Knox, 1951, pp. 217-218, pl.45, fig. 6-8; Fauvel, 1947, p. 8. Nereis arenaceodentato Betham, 1916, p. 134, pl. 46, fig. 1-3.

Lecalities-Ametican River, Kangaroo Island, (2), coll. S. J. Edmonds; Port Adelaide, outer harbour pilings, sublittoral fouling materials, (1), coll. S. J. Edmonds; Sellick Beach, South Australia, on edge of reef permanently covercd, (2), coll. H. M. Hale.

Length attains about 30 mm . Notopodia lack homogomph falcigers, thus this is regarded as a species of Neanthes. Parapodial lobes are bordered with a dark, glandular margin. On the proboscis both oral and maxillary rings have complete circlets of many paragnaths.

The present individuals differ from Neanthes ericognatha previously recorded (see synonymy above) in that areas V to VIII of the proboscis have a circlet of larger cones on the maxillary side, and 4 to 7 sows of uniformly much smaller cones on the oral side.

The distribution of the sten species is indicated in Chart II

Fig. 22-25 Neanthes vaalii
22. A median parapodium in anterior view, showing maximum deyelopment of acicular lobe, $\times 35 \cdot 7$.
23. Fifteenth last parapodium in anterior view, $\times 63 \cdot 2$.
24. Thirtieth parapodium from an epitokous male specimen, $\times 15 \cdot 7$.
25. Falcigerous neıropodial hook from an unmodified parapoditimi x 658 .

Neanthes krrguelensis (McIntash), 1885
Nereis kerguelensis McIntosh. 1885, pp. 225-227, pl. 35, fig. 10-12, pl. 16s, fig. 17, 18; Fauvel, 1916, p. 433; Benham, 1916, p. 122.
Localities-Port Willunga, S. Aust., 18 Nov., 1945, (2), coll. S. J. Edmonds; and Sellick Beach, S. Aust, on edge of reet, Jan. 1936, (1), coll. H. M. Hale,

Notopodia have spinigers only, thus this is referred to Neanthes Kinberg. On the proboscis areas I and V are bare; VI has one cone on a side; VII and VIII have a single row of 9 cones; each of areas II, III and IV has a heap of small paragnaths. In posterior parapodia the notopodial lobe diminishes in size and is tar surpassed by the acicular lobe of the same segment.

Nereis kerguelensis oligodonio. Augener (1913, pp. 164-166), from Westerin Australia, also lacks homogomph falcigers and is presunably a species of Neanthes, It differs from the stem species in having only 3 cones in a transverse row on areas VII and VIlI.

Neanthes angusticolids (Augener), 1913
Nereis angusticollis Augener, 1913, pp. 145-149, pl. 2, fig. 14, text fig. 13. Not Kinberg, 1866, p. 169.
Notopodial falcigers are absent, thus this is referred to Neanthes Kinherg. On the proboscis area I has 7 or 8 cones in an oval heap, II has at least 20 in an oblique triangular area; 111 has about 12 in an oblique oval group; IV has about 25 cones in a triangle; V is bare; VI has 9 or 6 in a rounded group; VIl and VIII form a broad transverse band with 2 or 3 to 5 rows, the band widest midventrally and narrowing toward the ends, Acjeula are black and oecur singly in parapodial bases.

Nercis angusticollis Kinberg (1866, p. 160) from Tahiti is a Nereis, senst stricto, since there are homogomph falcigers in notopodia.

Nereis Linnaeus, 1758
Type N. pelagica Linnaeus
The species of Nereis from the southern half of Australia are peculiar for having several in which the notopodial lobe diminishes in size going back, and homogomph falcigers have a large lateral tooth near the apex. These characters are known for N. falcaria, N. jacksoni, N. denhanensis and N. thompsoni (see helow). In others the oral ring is nearly to quite bare, approaching a condition in species of Ceratonereis Kinberg; such are the species N. jacksoni and N. falcoria. Others have tentacular (buccal) cirri that are annulate, as in N. cockburnensis. These features are neither generic nor limited to Australian species, but are more frequently encolntered among species from the southern hemisphere than elsewhere. Thus, the coarsely toothed homogomph falciger is known for N. zonata-persica Fuuvel from Persia, and for N. funchalensis Langerhans from Madeira. The posterior notopodial lobe diminishes in size in Neanthes kerguelersis (Mclntosh) (see Ehlers, 1897). Annulation of tentacular cirri is encountered in other species and genera, notably Nereis eugeniate (see Ehlers, 1897), Nereis anyusta Kinberg (1866), Neanihes kerguolensis (see Ehlers, 1897). Neanthes ruficeps (Ehlers, 1905) and Platynereis australis (see Ehlers, 1905), all from the Southern Hemisphere.

The several species discussed bolow atte those which have occurred in greatest abundance and for which some details have been obscure-

Nerels denhamensis Augenct, 1913
Nereis denhamensis Angener, 1913, pp. 156-159, pl, 3, fig. 51, text fig. 16: Fatuel, 1922, p. 494 ; Kott, 1951, pp. 99-101, fig. 3, 4.

Homogomph falcigers first appear after segment 20 to 30 and number 3 or 4 in a fascicle; they are thicker than their accompanying spinigers. The falcate appendage is short, weakly curved and projects from the end of the shaft for only about balf its lengit; the cutting edge has 2 or 3 small teeth.

On the proboscis area I has 1 or 2 cones in tandem; II has about 12 cones in 2 rows; III has about 12 cones in 3 rows; IV has 12 to 15 cones in a triangular patch; V has none; VI has 8 to 10 in an oval patch of 2 or 3 rows; VII and VIII have a single row of 8 to 10 larger cones.

In epitokal male individuals the parapodial change to natatory condition is at segment 15. Dorsal cirri of modified segments are sharply geniculate in their distal extremity and crenulate along the outer margin of the basal part.

Othe character named by Augener (1913, p. 158) but not commented on further, states that: "An den vorderen Rudern mit dorsalen Grätenborsten ist die Spitze der ventralen Sicheln gedeckt." If this indicates the presence of a hooded condition of anterior neurofaleigers, it describes a character unique for this species.

See Chari il for distribution.

Nereis Jacksuni Kinberg, 1866

Fg. 26-29
Nersis jacksoni Kinberg, 1866, p. 169; Augener, 1922, pp. 27-30, fig. 6; Augener, 1927 . pp. 130-133; Knox, 1951, pp. 216-217; Kott, 1951, pp-95-98; fig. 3. Neveis heirissonensis Augener, 1913, pp. 159-163, pl. 3, fig. 52, text fig. 17.

Localities-Sellick Beach, Sth, Aust,, on edge of recf permanently covered and at low tide, Jan. 1936, (1), coll. H, M. Iiale and K. Sheard; Shell Point, Botany Bay. N.S.W., from a 6-month iouling plate, estuarine, Feb. 1947x (4), coll. B. Dew; Cape Cove, Port Jackson, N.S.W, dredged in $3-4$ fms, from a gritty bottom, Oct. 1950 (4), coll. B. Dew; Hungry Paint, Cronulla, N.S.W., under rocks, Sept. 1950, (2), coll. B. Dew.

The proboscis has few paragnaths; areas I and V have none; II and IIT have a few cones and IV has a few more; VI has 1 to 4 only; VII and VIII have a single row of only 2 to about 7 cones (see also Chart IV). Jaws are dark amber in colour, thin, and have 5 or 6 oblique teeth at the cutting edge.

Prostomial antennae are long; they cxtend forward to mear the distal end of the palpi. Peristonial cirri are short, the longest reaches back only to about the second setigerous segment and others are shorter; all are irregularly annulated. The 4 eyes are embedded and visible through the smooth epithelium; the 2 of a side are neater together but widely separated from those of the opposite side; the anterior ones are the larger. Each eye tas a reddish purple iris and a large pale to white lens, nearly or over half as large as the diameter of the eye. The anterior margin of the prostomitm is entire, not incised.

In posterior segments the notopodial, or supra-acicular, lobe diminishes (fig. 26) conspicuously in size but is visible as a distinct lobe to the end of the body. Homogomph falcigers are present in median and posterior segments; their earliest presence varies from the fourteenth, or not before segment 17 or 18 . They have an appendage (fig. 27, 28) that is short, distally bifid; those in front are similar to those behind of the latter may lack the basal-most teeth (fig. 29),

Some individuals from Shell Point, Botany Bay, taken 2 Feb, 1941, are ovigerous, with large ova crowding the body cavity from the third setiger more posteriorly. There are no signs of epitoky, such as the presence of modified lobes or specialized setae. Indications are that development is direct. This is in cotitradiction to what Kott (1951, p. 97) found for individuals from Western Australia. Augeter (1913, pp. 159-60) examined about 50 specimens taken from May to September and found them all atokal.

The nore extended distribution is indicated in Chart IV.

Nereis thompsoni Kott, 1951
Nereis (Neanthes) thompsoni Kott, 1951, pp. 103-105, fig. 5.
This is here referred to Nereis since notopodia have homogomph falcigers. It bears resemblance to Nereis denhamensis (see above) but differs in its much higher paragnathal count. See Charts I to IV for diagnostic characteristics.

Fig. 26-29 Nereis jacksoni
26. Twenty-sixth parapodium seen from the front, $x 40$.
27. A homogomph falciger from twenty-sixth parapodium seen from the side, $\times 620$.
28. A homogomph falciger from twenty-sixth parapodium seen from the cutting edge, $\times 620$.
29. A homogomph falciger from a far posterior parapodium, $\times 400$.

Nereis peroniensis Kott, 1951
Nereis callaona peroniensis Kott, 1951, pp. 101-102, fig. 4.
This is here erected to specific category since its affinities are believed to be more remote from Nereis callaoana Grube than its author thought. In N. peroniensis the homogomph falcigers of posterior notopodia taper distally to a blunt point and have a coarse tooth at the cutting edge. In N. calloona Grube the corresponding falciger has a much longer appendage that is distally anchylosed and there are no coarse teeth along the cutting edge (see N, psetudonereis Hartman 1940, pls: 26, 27, a synonym of Nereis callaona Grube, ${ }^{(2)}$ for further characteristics). N. callaona Grube is known only from Peru.
${ }^{(4)}$ I am indebted to Mr. Donald J. Reish for having made a comparison of type specimens.
N. peroniensis Kott comes ncarer Nereis zonata persica Fauvel, as described by Pruvot (1930, pp. 47-50, pl. 3) Erom New Caledonia. In both the pharyngeal armature and notopodial falcigers show great resemblance.

Nereis cockburnensis Atigener, 1913

Fig. 30-32
Nereis cockburnersis Augener, 1913, pp. 153-156, fig. 15 a-c.
Localities-Sellick Beach, S. Aust., from stones in rock pools, Apr. 1936 (about 31 individuals including some epitokes), coll. H. Hale; Sellick Beach, St. Vincent Gulf, from limestone reef covered at dead low water, Jan. 1937, (10), coll. H. M. Hale; Rayal Australian Navy torpedo range at Pittwater, Broken Bay, from piles and under focks, (5), coll. B. Dew; Pennington Blay, south coast of Kangaroo Island, (3), coll. S. J, Edmonds,

Tentacular cirri are annulate, resemble those of a eunicid (thus nof as shown by Augener, 1913, pl. 3, fig. 47). The longest cirri when laid back, reach to the fifth sctigerous segment.

A unique and herctofore undescribed feature is the presence of 2 kinds of notopodial falcigers. Anterior segments, from the first bitamous one, have homogomph falcigers with a toothed cutting edge (fig. 30) resembling that of the corresponding neuropodial, heterogomph falciger (31). In median and posterior segments these notopodial falcigers are replaced by one which has a shorter appendage and traces of transverse ridges (fig. 32).

On the proboscis area I has a single tooth or 3 small cones in tandern (Augener described none); II has 10 cones in 2 rows (Augener gave 8 cones in 2 rows); III has only 4 to 6 cones (Augener said 2 in tandem); IV has about 18 cones in 3 rows with the largest ones on the side toward the jaws (Augener gave 5 to 11 cones in 2 or 3 rows). Area V has about 8 smaller cones or varying to only 1 cone (Augener gave 6 cones in 2 tows); VI has 5 or 4 cones in a circular area (as Augener stated); VII and VIII have a continuous band of many paragnaths with a single row of about 9 larger ones on the side toward the jaws (Augener described a broad band of many), and 5 to 7 irregular rows of many closely spaced cories on the side toward the mouth.

In postmedian segments the upper notopodial lobe comes to be small, triangulat and diminishes fatther back as an inconspicuous lobe.

An epitokal ovigerous individual, from Sellick Beach, 11 April 1936, has homogomph falcigers present from the first biramous parapodium. Accessory natatory lobes are first present from segment 17 , at the upper base of the dorsal cirrus. Natatory setae are also present, but not yet emergent, from sument 17. The last 11 segments lack accessory lohes, indicating the presence of a third body region in epitoky.

Nereis cockburnensis was first deseribed from Sharks Bay in $24 \frac{1}{2}$ meters, and Cockburn Sound, South Channel in $6 \frac{1}{2}-8$ metres on a rocky bottom. The present collections come from South Australia and New South Wates,

Perintreis Kinberg, 1866
Type P. Amblyodonta (Schmarda)
The 14 species indicated on Charts I to IV (see aboye) are largely tropical or subtropical, thus belonging mainly to the Damperian and Solanderinn provinces or to New Zealand. A few species occur along southern shores of Australia (see below).

Perinereis amblyodonta (Schmarda), 1861
Nereis amblyodonta Schmarda, 1861, p. 106; Ehlers, 1905, p. 28.
Perineveis novae-hollandiae Kinberg, 1866, p. 175 and 1910 , pl. 20 , fig. 9.
Nereis (Perinereis) amblyodonta Augener, 1913, ap. 174-175; Augener, 1922, pp. 22-23.

Localities-Amcrican River and lagoons, Kangaroo Island, under rocks and in mud flats; also in Venus Bay jetty, with colonies of Galeolaria, (8), coll. S. J. Edmonds; Port Willunga, S. Aust., in colonies of Hormosira, (4), coll. Miss P. Mawson; Port Jackson, Sydney Harbour, N.S.W., under rocks and in clumps of Galeolaria, (7), coll. B. Dew; Milsons Point, Port Jackson, N.S.W., whari piles and on mooring chains, (1), coll. B. Dew.

Nercis cockburuensis

Fig. 30-32
30. A notopodial falciger from sixth parapodium, $\times 650$.
31. A neuropodial falciger from sixth parapodium, $\times 650$.
32. A notopodial falciger from a far posterior segment $_{r} \times 6.50$.

This species is easily identified for the presence of long dorsal lobes of posterior notopodia, and for the arrangement of paragnaths on areas V and VL. See Charts I to IV for further details and more extended distribution.

Perinereis variodentata Augener, 1913
Nereis (Perinereis) variodentata Augener, 1913, pp. 179-182, pl. 3. fig. 50, text fig. 19.
Localitics-Sellick Beach, St. Vincent Gulf, S. Aust., from stones in rock pools at low tide and from limestone reef covered at dead low water, (2), coll. H. M. Hale; Pt. Wynward, north-west Tasmania, April 1936, (2), coll N. B. Tindale.

See Charts I to IV for distinguishing characteristics and distribution.
Perinereis vallata (Grube) 1857
Nereilepas pacifica Schmarda, 1861, p. 107.
Nereis (Perinereis) vallata Augener, 1913, pp. 175-177; Augener, 1923, pp. 2627.

Perinereis vallata Fauval, 1932, pp. 108-109; Knox, 1951, pp. 218-219, pls, 45-46. Locelity-Port Willunga, S. Aust., (1), coll. S. J. Edmonds.
See Charts I to IV for further details.
Piatynereis Kinberg, 1866
Type P. magalhaensis Kinberg
Among the 5 species to be encountered in littoral zones in Australia and New Zealand, 1, P. australis (Schmarda) is perhaps limited to New Zealand; another, P. polyscalma Chamberlin, is tropical. P. magalhaensis Kinberg, P. dumcribii antipoda, new subspecies, and P. bicanaliculata (Baird) occur in the Peronian and Flindersian provinces but all are not limited to them. See also Charts I-IV, above.

Platynereis dumerilii antipoda, new subspecies
Fig. 33-37
Nereis (Platynereis) australis Augener, 1913, pp. 182-184, and Augener, 1923, pp. 35-39. Not Schmarda, 1861.
Localtics-Pennington Bay, south coast of Kangaroo Island, among algae, (5), coll. S. J. Edmonds; Pittwater, Broken Bay, N.S.W., on piles. Sept. 1949, associated with Neveis cockburnensis and Perinereis calmani, (2, inchuding 1 subepitoke), coll. B. Dew; Hungry Point, Cronulla, N.S.W., Aug, 1950, (2) coll. B. Dew; Elizabeth Bay, Port Jackson, N,S.W., from mooring buoy, 28 Oct. 1950 (1 subepitake female), coll. B. Dew; Point Wynward, north-west Tasmania, (5), coll. H. M. Hale; Sellick Beach, St. Vincent Gulf, S. Aust., limestone reef covered at dead low water (8 juveniles), coll. H. M. Hale.

These individuals have been compared with Platynereis dumerilii (Audouin and M. Edwards) from the Mediterranean Sea. A comparison of diagnostic parts follows:

> P. d. antipoda
> South Australia
$1 \cdot 3 / 40$, thus are shorterappendaged

3 spinigers and
3 falcigers
Notopodial spinigers in median and posterior segments have a length/ wict th ratio of:
Median parapodia, at about segment 40, have a supra-acicular fascicle of:

First presence of notopodial (fig.
37) falcigers is in:

Anteromedian segments, where they are numerous and conspicuous

P. dumerilii

Mediterranean Sea
$1 / 80$, thus are longerappendaged

10 spinigers only

Postmedian segments, and they are inconspicuous and few

Dorsal lobe of median and posterior segments is:	subquadrate	subtriangular
Paragnaths of atca VI are:	obscure, with 2 weakly developed rows of pectinae	2 well-developed rows of pectinae
Dorsal cirri of posterior segments are:	very long (fig, 36)	not so long
In female epitoke, the upper base of the ventral circus has:	a long digitate lobe (fig. 35)	a short foliaceous lobe
In female epitoke, the posterior neuroacicular lohe bias:	a digitate process (fig. 36)	no digitate process
In female epitoke, the parapodial change is at:	segment 22/23	segment 22-23/24 or $22 / 23$, or $24 / 25$

In the female epitoke the first 7 pairs of dorsal cirri enlarge (6 g .33) gradmally.
The pharyngeal armature (specimen from Pt. Wynyard. Tasmania) shows areas I, II and V bare; III has 2 rows of obscure pectinae; IV is the most conspicunus area of the pharynx, with about 4 transverse series of pectinae; VI has 2 or 3 short lines of very weak pectinae; VII and VIII is an interrupted band with about 5 patches of 2 short rows each.

Individuals from Tasmania have simple gregarines in the alimentary tract, through middle and posterior third regions of the body.
P. dumerilii ocellata Pruvot (1930) from New Caledonia differs from P. dumerilii antipoda in that area VI of the proboscis is bare; the prostomium is marked with 3 dark spots, resembling eyes, hence the varietal name.
P. dumerilii antipoda is known only from the Flindersian province.

Platynereis magalmaensis Kinberg

Platynereis magalhaensis Kinberg, 1866, p. 177.
Nereis (Perinereis) magalhaensis Augener, 1923, pp. 28-39.
Locality-Sellick Beach, S. Aust., low tide, 16 Janı., 1936, (2), coll. H. M. Hale and K. Sheard.

This is hardly separable from P, australis (Schmarda) from New Zealand, except in its epitokal stages. In this the male epitoke has the first 21 segments unmodified and natatory setae from segment 22 ; the female has 25 segments unmodified and matatory setae from segment 26 . In both species the notopodia nearly of quite lack falcigers; a weakly developed one may be found in posterior segments, Other characteristics are detailed in Charts I to IV, above.

Platynereis bicanaliculata (Baird), 1863
Fig. 38, 39
Nereis bicamaliculato Baird, 1863, p. 109
Nereis agassizi Ehlers, 1868, pp. $542-546$, pl. 23, fig. 1.
Lacalities-Hungry Point, Cronulla, N.S.W., on fouling plate, 28 Sept., 1950 (1 female) ; Athol Bight, public jetty, 12 Oct. 1950, on kelp root (9); Camp Cove, Watsons Bay, Port Jackson, in 6-8 fms., 6 Oct. 1950 (6, including subepitokes) : Port Jackson, on piles and mooring chains, 23 Oct. 1950 (15); all collections are from New South Wales, made by Miss Barbara Dew.

This strikingly characterized species is well known from the north-east Pacific as Platynereis agassizi (Ehlers). It was artesting to find it well represented in the collections from New South Wales. This led to a re-examination of large series from various parts of the Pacific, including some from Hawaii,

Fig. 33-37. Platynereis dumerilii antipoda
33. Fourth parapodium from female epitoke, showing enlarged dorsal cirrus, $\times 100$.
34. Twenty-second parapoclium from female epitoke, in posterior view $\times 70$.
35. Twelfth epitokal parapodium from female, in posterior view, $\times 50$.
36. A far posterior parapodium from female epitake, seen from the front, $\times 83$.
37. A notopodial falciger from a posterior segment (specimen from Tasmania), $\times 832$.

Nereis bicanaliculata Baird from Vancouver Island, western Canada, and many other collections from widely scattered parts of the eastern Pacific. I am unable to distinguish them morphologically, and am therefore indicating the synonymy above.

Fig. 38-39
Platynereis bicanaliculata
38. A simple notopodial falciger from a specimen from New South Wales, $\times 500$.
39. A comparable notopodial falciger from one from California, x500.

Most individuals (preserved) from New South Wales are melanistic, have paired dark patches over the sides of the body and along the parapodial bases. Large, simple, notopodial falcigers (fig. 38) are present from about segment 10 or 12 to the posterior end of the body; they occur singly or by twos or threes and have a dark brown to black tip. A corresponding falciger taken from a specimen from California is shown in fig. 39.

Neuropodial falcigers are composite, first present from about segment 50 and continue to the end of the body; they are most numerous in a fascicle in front and diminish in number behind.

On the pharynx the Australian individuals differ slighttly from those of Califormia, in that area IV of the proboscis is less, instead of more, conspicuous than area III.

The presence of simple notopodial falcigers is not limited to this genus or species, hence cannot be regarded as generic. Ceratonereis erythraeegsis Fauvel has similar hooks in neuropodia.

The type collection of Nereis bicanaliculata Blaird (1863) deposited in the British Museum (Natural History) contains 8 pale (faded) specimens in good condition. The largest one, somewhat over 50 mm . long (thus about 2 inches as Eaird stated) consists of about 96 segments; it is posteriorly incomplete. In some individuals the parapodia are subepitokous but none has natatory setae. In all, there are one or 2 dark brown, simple notopodial falcigers, first present in parapodia from segment 12 or 13 to the posterior end. On the proboscis areas I, II and V are bare; III has a broad, oval patch; IV has a broad crescent of 7 to 10 irregular rows (this is the most conspicuons region); VI has 2 or 3 rows of pectinae: VII and VIII, continuous, have 5 transverse rows of pectinae with faint indications of 2 other rows at the ends proximal to area VI. Jaws have 7 oblique tecth and it distal fang. These individuals are inseparable from what has usually been called Platynereis agassisi (Ehlers), widely known from the north-east Pacific.

Throughout its range, Plotynereis bicanaliculafa is apt to occur with (or near) Plofynereis dumerilit (Audouin and M. Edwards) of one of its varieties. They are easily separable in that P. bicanoliculuta has large, simple falcigers in notopodia whereas P, dumerilii (and its subspecies or varieties) have composite falcigers in notopodia. P. bicanaliculata remains unknown except in northern and southern parts of the Pacific ; P. dumerilii is cosmopolitan in wamm seas

LITERATURE CITED

Auceneit, H. 1913 Die Fauna Südwest-Australiens. Polychacta Errantia. Herausg. von Michaelsen und Hartmeyer, Jena, Bd. 4, po, 65-304, 2 pls., 42 figs.
Augener, H, 1918 Polychseta. Beiträge zur Kemintris des Meeresfauna West-Afrikas. Herausg. vot W. Michaelsen, Hamburg, 2, Lief, 2, pe. 67-625, 6 pls.
Avginer, H, $192 z a$ Litorale Polychaeten von Juan Fernandez. The Natural History of Juan Fernandez and Easter Tsland. Ed. by Dr. Carl Skottsberg, 3, pp. 161-218, I pl.
Augener, H, 1922b Australische Polychaelen des Hamburger zoologisches Museums. Arch. Naturg. Berlin, 88, Abt. A, 1p. 1-37, 9 figs.
Augener, H. 1922c Revision der Australischen Polychaeten-Typen von Kinberg. Ark. Zool. Stackholm, 14, pp. 1-42
Adamer, H. 1922d Restuts of Dr. E. Miöberg's Swedish Scientific Expedition on Australia, 1910-13. Polychaeten. Vetensk. Akad. Stockholm, Handl., 63, No. 6, pp. 1-49, 10 figs.
Angener. H. 1923 Polychaeten won den Auckland unid Campbell Inseln, Vidensk. Medd. Naturh. Foren. Coperhagen, 75, in 1-115, 44 figs.
Augener, H. 1924 Polychaeta von Neuseeland. I. Errantiz. Ihiu., 75, Dp. 241-441, 11 figs.
Augener, II. 1927 Polychacten van Südost- und Siud-Australien (Papers from Dr. Th, Mortenser's Pacific Experition 1914-16. No. 38). Tvid., 83, ppi. 71-275, 17 figs.
Brago, W. 1863 Descriptions of several new Species of Worms belonging to the Annelida Frrantia arnd Sedentaria or Tubicola of Mime Edwards. Zool, Soc. London, Proc., P. 10. 106-110

Bratiak W. B. 1900 Report on the Polychatat of the sub-Antaretic Tslands of New Zeatand. In Reports based on observations and collections made during an expedition on the Goverument steamer Hinemoa in November 1907. 1, pp. 236-250, 1 pl.
Bevfan. W, B. 1916 a Notes on New Zealand Folychaeta. II. New Zealand Inst, Proc. Trans., 48, pp. 386-396
Benhan, W. B. 1916 Report on the Polychaeta obtained by the F.I.S. Endeqvour an the coasts of New South Wales, Victoria, Tasmania snd South Australia. Pt. 2. Sydrey, H. G. Danneviz, 4, pts. 2 and 3, pp. 125゙-162, pls, 46-48

Benban, W. B. 1927 Polychaeta, British Antarctic Terra Nowe Expelition, 1910. Nal. Hist. Rep, Zool., 7, No. 2, pp 47-182, 6 pls.
Dembeiey, E., and Berkeley, C. 1948 Annelida, Iolychaea errantia. Canad. Pac. Fautha, No. 96, (1). Fish. Res. Bd. Canada. Toronto, ip, 1-100, 100 figs.
Bi,anchard, E. 1849 Anelides du Chile, in Giry's Historia fisica y politica de Chile. Segun documentos adquiridos en esta republica durante doce anos de residencia en allaZoologia. Paris, 3, pp. 9-52
Ceambialin, R. V. 1919 The Anmelida Polychaeta. Mus. Comp. Zool. Narvard, Mem. 48, pp. 1-514, 80 pls.
Ceare, JI, L, 1946 The fichinodem Fiuna of Australia. Its composition and its origio, Pub. Carnegie Inst. Wash., No. 566. Washington, D.C., pp, iv and 567
EhLREs, E. 1868 Die Borstenwirmer. Leipzig, W. Engelmann. xx and 748 pp 24 pls.
Ehlers, E. 1897 Polychaeten. Hamhurger Magalhaenischen Sanunclreise. Hamburg. Eriedrichsen \& Co. 148 pe. 9 pl:,
Ehlers, F. 1905 Neuseelātdische Anneliden. K. Ges. Wiss., Göthingen, Math,-Pbys. Kl. ncae Folge, 3, No. 1, pp, 1-80, 9 pls.
Fauver, P. 1911 Ammélides polychètes du golfe Persique recueillies par M, M. Bogoyazlensky. Arch. zool. exp. gén Paris, sér. 5, 6, pr. 353-439, 3 pls.
Fauvil, P, 1916 Annélides polychètes des Iles Falkland recueillies par M. Rupert Valléntin (1902-1910). 1hid., 55 , pp. 417-482, 2 pls.
Fauven, P. 1917 Anncides polychetes de laustralic meridionale. 16id., 56, mo. $159.2 \% \mathrm{~g}$.
Fabvel, T. 1918 Annélides nolychètes mouveller de l'Alfique orientale, Mus. Hist. nat. Paris, Bull., 24, PR 503-509, 4 figs.
 Arch zool exp. gén. Paris, 58, up. 315-473, pls. 15-17
Fadven, P. 1921 Polychetes de Madagascar, du Museum d'Histoire natwelle recueilies par M. le 1Dr. W. Kaudern en 1912. Ark. Zool. Stockholm, 13, No. 24, wp. 1-32, 1 pl., 2 figs.
Fatveri P. 1922 Annelides polychètes de larchipel Houtman Abrohol (Anstralie occidentale) recueillies jar M. Ie Protessear W. G. Dakin. Lim Soc. Lomden, Jour., 34. pp. 487-500), 2 figs.
FAuyes. P. 1923 Annélides polychéles des ites Gambier et de la guyane francaise. Accad. Nuovi Lincei Rome, Mém, sér. 2, 6, pp, 1-59, 8 figs,
Faviti, P, 1930 Annelida Polychartio of the Madras Government Museum. Madras Govt. Mus. Buill, tis., Nat. Hist. Soc., 1, No, 2, pp 1-72, 18 figs.
Fnuva, F. 1932 Amelida polyclaela of the Indian Maseum, Calcutha Indian Mus, Calcutia, Mem., 12, No. 1, Tp, 1-262, 9 pls, 40 figs.
Faguel. P. 1933 Aracilides polychètes du golfe da Pei Tchen lyde ta callertion ak Musce Hoatig ho Pai ho. Mus. Hoangho Pai ho Tien-Tsin, Pub., 15, mo 1-67, 6 figs.
Finvel, P. 1936 Sur quelques. Annélides polychètes de J'ile de Paques. Mus. Hist, nat. Paris, Bull., sér. 2. 8, pp. 257-258
Fativel, $\mathrm{P}, 1947$ Attnélides polychètes de Nouvelle-Caledonie et des iles Camhict. Faume fle 1'Empire Franeais. VIll. $108 \mathrm{pp}, 90$ figs.
Feurbiors, II, 1931 Neue marine Einwanderer ter Binnengewässet von Java und Sumatra. Forschung und Fortschritte, Berlit, No. 17
Goobsicar, E. 1045 The study of nephridia atid genital ducts since 1895, Mier Sci. London. Quar. Jour, $85, * 2-4$, pp. 113-392, figs.
Geidvely F . 1927 The fittoral fama of Krusadai Island in the Gulf of Manar. Chaetonnold. Madras Govt. Mus., Bull., nes., Nat. Hist., I, pp. $55-86,2$ pls.
Casivier, C. 1901 Contribution a l'étude des Annélides polychètes de lat Mer Rouge. Nomy, Arcli. Mus. Paris, sér. 4, 3, pp. 147-268, fizs. 160-285, 4 pls.
Grube, E. 1857 Antulata Oerstediama. Pt. 2, pp. 158-166
Gevive, F. 1868 Reise der Oesterreichischen Freestte Novara um dic Frde in den Jaliren 1857, 1858 und 1859. Zoot. Theil, Bd. 2, Abt 3. Aoncliden. Wien pr 1-48, 4 pls.
Gbuaf, E. 1869 Beschreibury neuer vor der Noznra Fexpedition raityebrachter Ammeliteti und ciner I.andplanarie. Zool-Bot. Gesells.. Wien. Verh., 16, pp. 17.1-184
Grurf, E, 1878 Aruntata Semperiana. Acad. Sci. St. Petershurg, Mem., 25, 300 pa, 15 pls.
Hartman, O. 1940 Polychaetous annelids. Pt, 2. Chrysonetalidae to Gonadidne. Hancock Eacific Exped., 7. po. 173-287, 14 pls.
Hartman, O. 1948 The Maritie Abnclids erected by Kinberg with notes on some other types in the Swellish State Maseum. Ark. Zool. Stockholm, 42A. pr. 1-137, 18 pls.
Hartmas, 0.1952 Jphirime and Ceratocephala (Polychaetouts annelids) from California. Southern Calif. Acad Sci, Bull., 51, pp. 9-20, 2 pls
Habmanc, O. 1953 Non-pelaric Polychaeta. Swedish Antarctioa Fxped. 1901-1903. Further Toological Results of the Swedigh Antarctic Expedition, 4, No, 11, 10
2 figs. 2] figs.

Horst, R. 1889 Contributions towards the Knowledge of the Amelida Polychacta. Notes Leyden Mus. Jentinli, 11, 1p). 161-1866, 2 pls.
Horst, R. 1924 Folychacta errantia of the Siboga-Expedition. Nereidae and Hesiondae. Sihoga-Exped. Leyden, 99, (Monogr, 24, 1c), pp. 145-198, 7 pls.
Kixberc; I, 1866 Annulata nova. Oerv, Vet. Akad, Stockholin, 22, 11p. 167-169 and 239-258
Kinhers, J, 1910 Anntlater. Kongliga Svenska Fregattett Eugenies Resa onkring jorden, 1851-53. Lppsala and Stockholm, Almuuist and Wicksells., 78 pp., 29 ris.
Knox, G. A. 1951 The Polychaetous Atmelids of Banks Peninsulia. Rec. Canterbury Mus., 5, pp. 213-229, pls. 44-50
Kotr, Parricis 1951 Nereide and Eunicidae of South-western Australia; also notes on the Ecology of Westerm Australian Limestone Reefs. Roy. Soc. West. Australia, Jour., 35, 19, 85-130, 7 figs.
McIntostr, W. C. 1885 Report on the Anmelida Polychacta collected by H.M.S. Chollenoer during the years 1873-76. Challenger Reprorts, 12, pp. 1-554, 55 and 39a pls.
Marenzfller, F. von. 1879 Südjapanische Anmeliden. Akas. Wiss. Wien, Denkschr., 41, pp. 109-152, 6 pls.
Monro, C. 1926 On the Polychacta collected by H.M.S. Alerl, 1881-1882. Fimilues Hesionidae and Nereidae. Linn Suc. London, Jour., 36, pp. 31.1-323
Monro, C. 1930 Polychaete Worms. Discovery Reports, 2, pp. 1-222, 91 figs.
Monno, C. 1931 Polychaeta, Oligochaeta, Echiuroidea and Sipunculoideib Great Barrier Reef (QId.) Exp. 1928-29. Sci. Rep. Brit. Mus. (Nat. Hist.), 4, (1), pp. 1-37. 15 figs.
Monro, C. 1936 Folychaete Worms. II. Discoutry Reports, 12, pp. 59-198, 34 figs.
Monro, C. 1937 The John Murray Fxpedition 1933-34. Srientific Reports, Polychateta. 8. No. 8, pp. 243-321, 28 figs.

Monno, C. 1938 Oh a small colleclion of Polychacta from Swan River, Westem Australia. Ann. Mag. Nat. Hist. Londnn, ser, 11, 2, pp. 614-624, 13 figs.
Monro, C. 1939a Polyrhaeta Antarctic Research Experlition, 1929-1931. Adelade, Australia. Reports, Ser. B (Zoology and Bntany), 4, pt. 4, pp. 89-156, 28 figs.
Monro, C. $1939 b$ On some Tropical Polychaeta in the British Museum, mostly collected by Dr. C. Crossland at Zanzibar, Tahiti and the Marquesas. Novitat Zonl. Lotidon, 41, pp. 302-305
Okuda, S. 1938 Polychators Annelids from the vicinity of the Mitsui Institute of Marine Biology. Japan, Jour. Zool., 8, pp. 75-105, 15 fige.
Onvia, S. 1940 Polychactous Annelids of the Ryuky Islatids. Biogegr. Soc. Japan, Bull., 10. No. 1. po. 1-24, 9 figs.

Pruvor, G. 1930 Annélides Polychètes de Nourclle-Caledonie recueillies par M. Francois. Areh, zool. exp. cen. Paris. ${ }^{70}$, pp. 1-94. 8 figs., 3 pls.
Quatmefages, A. df. 1865 Histoire naturelle des Antnéles marina et d'eitu douce. Paris. 1. 50. 1-588

Racovitza, E. 1893 Sur la Micronercis variegata Clpd. Acad. Sci. Paris, C.R., 116, pp. 1,3901,392
Schmarma, L. 1861 Neue wirbellose Thicte bobachtet und gesammelt auf ciner Reise um die Erif. 1853 bis 1857. Leipzig. Pt. 2. pn. 1-164, 22 pls.
Whyfy, A. 1905 Renott on the Jolychaeta collected by Professor Hereman, at Ceylon, in 1902. Ceylon Pearl Oyster Fisheries, Suppl. Rep., pt. 4, pp. 243.324, 8 pls.

[^0]: * Allan Hancock Foundation of the Unfersity of Southera Califoraia.

 Comtribution No. 138.
 Trams: Rüy Scac, S. Alist., 72, Juls, 1954

[^1]: (T) In in indebted to M5. Donald J. Feish for the preparation of the sections,

